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Abstract

Merging of information given by different decision makers (DMs) has become a
much discussed topic in recent years and many procedures were developed to-
wards it. The main and the most discussed problem is the incompleteness of given
information. Little attention is paid to the possible forms in which the DMs pro-
vide them; in most of cases arising procedures are working only for a particular
type of information. Recently introduced Supra-Bayesian approach to merging of
information brings a solution to two previously mentioned problems. All is based
on a simple idea of unifying all given information into one form and treating the
possible incompleteness. In this article, beside a brief repetition of the method, we
show, that the constructed merger of information reduces to the Bayesian solution
if information calls for this.

1 Introduction

In this article we bring the answer to a consistency question regarding the final result of information
merging method based on Supra-Bayesian approach (introduced in [7]).

Method itself deals with problem of incomplete and incompatible (having different forms) data
from sources – decision makers. People are trying to solve the incompleteness by developing vari-
ous methods, bases of which are, e.g. semantics, entities and trust [1], reduction of the combination
space by representing the notion of source redundancy or source complementarity [2] or Bayesian
networks and factor graphs [3]. Altogether they often lack one thing – they are usable only if the
information has unified form. The Supra-Bayesian merging solves previously mentioned problems
in three steps. First, we focus on the incompatibility of forms of input data and transform them
into a probabilistic form. Second, we fill in the missing information (in the paper it is called exten-
sion) to resolve the problem of incompleteness. After that we will construct the merger of already
transformed and extended data. Articles related to the proposed topic can be found in [4] and [5].

Section 2 briefly describes the construction of the merger. Section 3 presents an important check of
the solution’s logical consistency: the final merger reduces to the standard Bayesian learning when
the processed data meets standard conditions leading to it. Throughout the text a discrete case is
considered.

2 Basic terms and notation

In the beginning of this section we introduce the basic terms and notation used through the text, then
we give the main steps of the method.
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The basic terms we use are as follows:

• a source – a decision maker (e.g. human being), which gave us the information,
– we now pick one source, denoted by S; the explained setup can be, of course, applied to
other sources as well,
• a domain (of the source) – a state space, about which the source provides the information,

– since a domain can be difficult to describe, we use (discrete) random variable to map it
onto preferable space; the range of this mapping consists of finite number of elements
– every source can describe more than one domain; the relation between them and their
ranges maps random vector
• a neighbour of the source S – another source, which has at least one domain (of its consid-

ered random variables) same as S
(note that the range of these variables can differ, so the arising probability measure can be
different for each source)
– we assume that the number of neighbours is finite (for each considered source S); they
are labeled by j = 1, . . . , s− 1 <∞,
– altogether, we have a set consisting of s sources (source S and its s− 1 neighbours),
– we denote random vector of jth source by Yj , set of its realizations by {yj}.

2.1 Transformation of information into probabilistic type

I. Consider that the jth source expressed the information about its domain as
a realization of its random vector Yj denoted by xj .

The transformation to probability mass function (pmf) gYj
will be done via Kronecker delta as

follows:

gYj
(yj) = δ(xj − yj) =

{
1 if xj = a particular realization yj of Yj

0 otherwise. (1)

II. Let jth source give us the conditional expectation of the function of Yj . We would like to deter-
mine the pmf gYj

(yj) = gFj
(fj |pj), where Pj denotes a part of Yj , which is specified by source’s

past experience with realizations {pj} and Fj denotes a part of Yj expressing source’s uncertainty
(ignorance) with realizations {fj}. We will use the maximum entropy principle (see [8], [9]): we
construct a set of all possible pmfs describing Yj and satisfying the expectations, then we choose
the pmf with the highest entropy.

III. Let jth source give us the expectation of the function of Yj . Similarly as in the previous case
we will use the maximum entropy principle to determine gYj (yj) = gPj (pj).

IV. and V. Let the source give a pmf of Yj denoted by gPj
(pj) or conditional pmf of a part of Yj

conditioned by the remaining part denoted by gFj
(fj |pj). These types of information already are in

the targeted probabilistic form.

2.2 Extension

Our first step in constructing the extensions is a unification of the ranges of considered sources
j = 1, . . . , s < ∞, which means construction of random vector Y involving all different random
variables considered by sources. A set of realizations of Y will be denoted by Y = {y} and their
number will be finite (since we assumed range of each source has finite number of realizations).

The decomposition of Y according to jth source then arises naturally:

• if jth source has its random vector decomposed into two parts Yj = (Fj ,Pj) (as intro-
duced in previous section), the decomposition of Y will be: Y = (Uj ,Fj ,Pj), where Uj

(with realizations {uj}) stands for the remaining realizations in Y unconsidered by jth
source;

• if for jth source holds that Yj = Pj , then the decomposition of Y will be: Y = (Uj ,Pj),
where again the part Uj denotes the remaining random variables in Y unconsidered by the
source.
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The yet unconstructed merger h̃ serves us for the extension of pmfs gPj
and gFj |Pj

to g(j)Y describing
the union of neighbours’ ranges. If the conditional pmf gFj |Pj

is available, then the extension is:

g
(j)
Y (y) = h̃(uj |fj ,pj)gFj

(fj |pj)h̃(pj), where h̃(pj), h̃(uj |fj ,pj) and h̃(uj |pj) are marginal and

conditional versions of h̃. We proceed similarly if the marginal pmf gPj
is available.

2.3 Final merger

After successfully dealing with the transformation and extension of given information we can derive
the merger. According to the Bayesian framework [10] our merger will be following pmf:

h̃ = argmin
ĥ∈Ĥ

Eπ(h|D)[L(h, ĥ)|D],

where: Ĥ denotes a set of all possible estimates ĥ of h, D stands for a matrix consisting of extended
probability vectors g(j)Y , π(h|D) is the posterior pdf of h based on D, L(. , .) is a loss function.

Since h and ĥ are pmfs, the loss function should measure the distance between them. In particular,
we choose the Kerridge inaccuracy K(. , .) (see [11]). We then get the following identity (after using
Fubini’s theorem and a little bit of computation; H is a probabilistic simplex containing h-values):

argmin
ĥ∈Ĥ

Eπ(h|D)

[
K(h, ĥ)|D

]
= . . . = argmin

ĥ∈Ĥ
K
(

Eπ(h|D)(h|D), ĥ
)
.

Kerridge inaccuracy reaches the minimal value if its arguments are equal almost everywhere (a.e.)
(see [11]). Then the following equation holds:

h̃ = argmin
ĥ∈Ĥ

Eπ(h|D)

[
K(h, ĥ)|D

]
= Eπ(h|D)(h|D).

The only problem is we do not have the posterior pdf π(h|D) of h, so before we actually get to
the formula expressing the final merger h̃ (final estimate of h) we have to choose π(h|D). Again
we will use maximum entropy principle. This time we are looking for the element with highest
entropy subject to additional constraints. The constraints will be connected with the opinion of
source S about the distance of jth source from the unknown pmf h using Kerridge inaccuracy (for
all j = 1, . . . , s). They are expressed by

Eπ(h|D)

(
K(g

(j)
Y , h)|D

)
≤ βj(D). (2)

Thus, to obtain the optimal π̃(h|D) we have to solve following optimization task:

π̃(h|D) = argmin
π(h|D)∈M

[∫
H

π(h|D) log π(h|D)dh
]
, (3)

where M =
{
π(h|D) : Eπ(h|D)(K(g

(j)
Y , h)|D)− βj(D) ≤ 0, j = 1, . . . , s,

∫
H
π(h|D)dh− 1 = 0

}
.

By constructing and rearranging the Lagrangian L(. , .) of the task (3) we get that its minimum is
reached for pdf of Dirichlet distribution Dir({νy}y∈Y):

π̃(h|D) =
1

Z(λ(D))

∏
y∈Y

h(y)νy−1 with parameters νy = 1 +

s∑
j=1

λj(D)g
(j)
Y (y), ∀ y ∈ Y.

Once we have computed the posterior pdf, we can go back to the expressing the final merger (the
optimal estimate h̃ of h). Denote the number of realizations of Y by n (<∞) and use the properties
of Dirichlet distribution, particularly

Eπ̃(h|D)[h(y)|D] =
νy
ν0
, where ν0 =

∑
y∈Y

νy =
∑
y∈Y

1 +

s∑
j=1

λj(D)

=1︷ ︸︸ ︷∑
y∈Y

g
(j)
Y (y) .

We get following result:

h̃(y) =
1 +

∑s
j=1 λj(D)g

(j)
Y (y)

n+
∑s
j=1 λj(D)

. (4)
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3 Connection to the Bayesian solution

As promised earlier (see Section 1) we will now check if the final merger (4) reduces to a standard
Bayesian learning if merging scenario meets conditions leading to it. First we will derive the empi-
rical pmf via Bayesian approach, second we will reformulate the problem so that our merger can be
applied, compute the empirical pmf and compare the results.

3.1 A Bayesian view

Let

- Y be a discrete random variable with finite number of realizations {y} = Y ,

- θ be a following random vector: θ = (P(Y = y))y∈Y = (θy)y∈Y . Then let X1, . . . , Xs,
(s < ∞), denote the sequence of observations about Y , which will be considered as inde-
pendent random variables with the same distribution as Y (depending on θ).

If we assume that

- the prior distribution of θ = (θy)y∈Y is Dirichlet distribution Dir({αy}y∈Y), meaning

q(θ) ∝
∏
y∈Y θ

αy−1
y ,

- the conditional probability of Xj , j = 1, . . . , s, conditioned by θ is

fXj
(xj |θ) =

∏
y∈Y θ

δ(xj−y)
y , where δ(.) stands for Kronecker delta (see (1)),

the posterior pmf of θ based on X1, . . . , Xs is then

π(θ|X1 = x1, . . . , Xs = xs) ∝ q(θ)
s∏
j=1

fXj (xj |θ)

=
∏
y∈Y

θαy−1
y

s∏
j=1

∏
y∈Y

θδ(xj−y)
y =

∏
y∈Y

θ
αy+

∑s
j=1 δ(xj−y)−1

y (5)

Since the formula (5) is the pdf of Dirichlet distribution Dir
({

αy +
∑s
j=1 δ(xj − y)

}
y∈Y

)
, we

can easily compute the conditional expectation of θy conditioned by X1, . . . , Xs as follows:

Eπ(θ|X1,...,Xs)(θy|X1 = x1, . . . , Xs = xs) = P̃ (Y = y) =
αy +

∑s
j=1 δ(xj − y)∑

y∈Y

[
αy +

∑s
j=1 δ(xj − y)

]
=
αy +

∑s
j=1 δ(xj − y)∑

y∈Y αy + s
(6)

Under the following choice:
αy = 1 ∀ y ∈ Y (7)

formula (6) will look as follows

P̃ (Y = y) =
1 +

∑s
j=1 δ(xj − y)∑
y∈Y 1 + s

. (8)

If n denotes the number of realizations of Y , then: P̃ (Y = y) =
1+

∑s
j=1 δ(xj−y)
n+s .

Note: The first part of (8) – 1∑
y∈Y 1+s – can be considered as the prior pmf of Y , because if there is

no available information, we will get: P̃0(Y = y) = 1∑
y∈Y 1+s . Then, the choice (7) coincides with

the statement, that the prior pmf for Y is a pmf of Uniform distribution.
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Illustrative example:

Assume we are interested in the changes of the stock price. Y will now be an identity mapping from
the set consisting of 3 elements: 1 (increase), 0 (stagnation), -1 (decrease). We now get a sequence
of data - opinions from independent experts: {1,−1, 1, 1, 0, 1, 1,−1, 1, 1}. Then the estimate of the
probabilities will be (regarding the (7)):

P̂ (Y = 1) = 1+7
3+10 = 8

13 , P̂ (Y = 0) = 1+1
3+10 = 2

12 , P̂ (Y = −1) = 1+2
3+10 = 3

13 .

3.2 Merging approach

Now we reformulate and handle the same information scenario as in Subsection 3.1 by using the
proposed information merging.

Let us have a group of s (independent) sources, all of them describing the same domain and range.
Therefore sources are neighbours and so the merging can be applied on them. The relation between
domain and range maps discrete random variable Y , realizations of which are denoted by {y} = Y .

Assume also that the information they gave are the values of Y , denoted by x1, . . . , xs. Now we can
follow the steps introduced in the previous sections:

1. transformation: (non-probability form into probability form)

– xj will be expressed (in the probability form) as follows: gYj=Y
(yj = y) = δ(xj − y),

2. extension: (from particular domains to the union of all considered domains)

– since the sources have the same domain, Y , the union is also Y ,

– because of that, the extended version of probabilistic form of given information will be:

g
(j)
Y (y) = δ(xj − y),

3. merging: now that we have probabilistic information extended on Y , we can use the merger (4):

h̃(y) =
1 +

∑s
j=1 λj(D)g

(j)
Y (y)∑

y∈Y 1 +
∑s
j=1 λj(D)

=
1 +

∑s
j=1 λj(D)δ(xj − y)∑

y∈Y 1 +
∑s
j=1 λj(D)

,

which for particular choice λ1(D) = . . . = λj(D) = . . . = λs(D) = 1 has following form:

h̃(y) =
1 +

∑s
j=1 δ(xj − y)∑
y∈Y 1 + s

, (9)

which coincides with (8). That is if we assume that the sources have the same reliability factor (see
subsection 2.3) and it is equal to 1, the final merger (4) will reduce to the standard Bayesian learning
considered in Subsection 3.1.

Illustrative example:

Our results can be easily applied on the example in the previous section: we have 9 independent
sources, which have the same domain. Therefore they are neighbors. All given information are just
values, we have to transform them into probabilities (see Section 2.1). Since they also have the same
range no extension is needed, so we can directly proceed to the merging. According to (9) results
are the same as in the example in Subsection 3.1.

Remark

In the note after the final merger (8) we brought the explanation of what should its first part repre-
sent – generally, it stands for the prior pmf for considered random vector Y (see (4)). In this paper,
the prior pmf of Y is a pmf of uniform distribution. But we will be allowed to use another prior
distribution if we choose constrained minimum cross entropy principle (see [9]) for determination
of the posterior pdf (see subsection 2.3) instead of constrained maximum entropy principle. It is
because the maximum entropy principle coincides with minimum cross entropy principle when prior
distribution is uniform.
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4 Conclusion

This paper brings an important conclusion regarding a new method for merging of information,
which successfully deals with the different types of given partially overlapping information and also
with problem of missing data. Since the method is based on Bayesian framework, we showed that
it reduces to a standard Bayesian learning if independent identically distributed data are at disposal
for parameter estimation. Still there are some open problems and topics of the future work, e.g.
the choice of constraints βj(D) in (2), choice of prior distribution (see previous remark) and the
extension to the continuous space.
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